Triphenylstannyl derivatives of isothiazol-3(2 H)-one 1,1-dioxides. Crystal structures of 2-triphenylstannyl 1,2-benzisothiazol-3(2 H)-one 1,1-dioxide [$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnNC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$] and 2-triphenylstannyl 4,5-dimethylisothiazol-3(2 H)-one 1,1-dioxide $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnNC}(\mathrm{O}) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{SO}_{2}\right]$

Seik Weng Ng, V.G. Kumar Das *
Institute of Advanced Studtes, Universtty of Malaya, 59100 Kuala Lumpur (Malaysia)
Zhong-Yuan Zhou and Thomas C.W. Mak *
Department of Chemustry, The Chinese University of IIong Kong, Shatin, New Territories (IIong Kong)
(Received August 19, 1991)

Abstract

2-Triphenylstannyl 1,2-benzısothiazol-3(2H)-one 1,1-dioxide forms crystals belonging to the orthorhombic $P 2_{1} 2_{1} 2_{1}$ space group, with $a=9.333(1), b=12.329(2)$ and $c=19.348(3) \AA$. Owing to a weak ($2885(5) \AA$) tin-oxygen sulfonyl interaction that connects the molecules to form a helical chain, the tin is five-coordinate in a distorted trans-trigonal bipyramidal environment. The molecules of 2 -triphenylstannyl 4,5-dimethylisothiazol-3($2 H$)-one 1,1 -dioxde, which also crystallizes in the $P 2_{1} 2_{1} 2_{1}(a=$ $10.288(3), b=12.187(1), c=17.542(4) \AA)$ space group, are similarly connected $(2.742(5) \AA$) into a chain along the b-axis

Introduction

2-Triphenylstannyl 1,2-benzisothiazol-3(2H)-one 1,1-dioxide, an N-stannylimide, forms stable adducts even with weak oxygen-donor ligands [1-4]. Its crystal structure and that of 2-triphenylstannyl 4,5-dimethylisothiazol-3(2H)-one 1,1-dioxide are described below.

Experimental

2-Triphenylstannyl 1,2-benzisothiazol-3(2 H)-one 1,1-dioxide was obtained by refluxing equimolar amounts of triphenyltin hydroxide and saccharin in toluene with azeotropic distillation of the water formed [5]. Large crystals of the analytically pure compound were obtained from the filtered solution upon slow cooling.

2-Triphenylstannyl 4,5-dimethylisothiazol-3($2 H$)-one 1,1-dioxide [4] was recrystallized from ethanol.

Diffraction data were collected on a Nicolet R3m/V four-circle diffractometer using graphite-monochromated $\mathrm{Mo}-K_{\alpha}(\lambda=0.71069 \AA)$ radiation. The crystal of 2-triphenylstannyl 1,2-benzisothiazol-3($2 H$)-one 1,1-dioxide measured $0.36,0.42$, 0.46 mm . The unit-cell dimensions were obtained from 25 strong reflections scattered throughout reciprocal space, and intensities were collected ($h=0-13$, $k=0-17, l=0-26)$ up to $2 \theta_{\max }=60^{\circ}$. The data set comprised 2664 reflections obeying the $(I) \geqslant 3 \sigma(I)$ criterion. Direct phase determination gave the position of the Sn atom, and the remaining non- H atoms were derived by successive difference Fourier syntheses. The weighting scheme, $w=\left[\sigma(F)^{2}+(0.02 F)^{2}+1\right]^{-1}[6]$, was used in the refinement. The H -atoms were located in later difference Fourier maps, and were refined with a B temperature factor of $5 \AA^{2}$. Full-matrix leastsquares refinement based on F converged at $R=0.034, R_{\mathrm{w}}=0.039 ; 337$ variabies were refined. Computations were performed by using the molen structure deter-

Table 1
Positional parameters for 2-trıphenylstannyl 1,2-benzısothiazol-3(2 H)-one 1,1-dioxide

Atom	x	y	z	$B\left(\AA^{2}\right)^{a}$
Sn	0.45571(4)	$001865(3)$	$080186(2)$	3 478(5)
S	0.2916(1)	-02211(1)	$075776(7)$	3 68(2)
O1	0.4075(4)	-0 2750(4)	$07224(2)$	4 57(8)
O2	$0.1879(5)$	-01678(4)	0.7158(2)	5 29(9)
O3	$0.3776(7)$	-01289(5)	$09338(2)$	68 (1)
N	0.3570(5)	-01387(4)	08168 (2)	$385(9)$
Cl	0.4345(5)	$0.0276(5)$	$0.6930(2)$	$374(9)$
C2	0.5250 (7)	-0.0280(8)	0.6517(3)	$66(2)$
C3	0.510(1)	-0.024(1)	0 5795(4)	10.2(3)
C4	$0.4022(9)$	$0.039(1)$	0.5507(3)	7.8(2)
C5	0.314(1)	$0088(1)$	0.5911(4)	9.5(2)
C6	0.3293(9)	$00872(8)$	0 6624(3)	8 2(2)
C7	0.6647(5)	-0.0190(5)	0.8381(3)	$384(9)$
C8	$0.7272(7)$	-01133(6)	0.8181(4)	$67(2)$
C9	$08682(8)$	-01366(8)	08357 (6)	$88(2)$
C10	0.9459(7)	-0.0657(7)	08735(5)	$74(2)$
C11	$08843(7)$	$0.0289(7)$	$08944(4)$	$65(2)$
C12	$07452(7)$	00530 (6)	08766 (3)	$47(1)$
C13	0.3266(5)	0.1221(4)	08640 (3)	$355(9)$
C14	$02177(8)$	0.1831(7)	08370 (4)	$64(2)$
C15	$0.1377(9)$	02510 (8)	0.8771(5)	$84(2)$
C16	$01647(8)$	0.2638(6)	0.9445(5)	73 (2)
C 17	$0.270(1)$	0.2013(8)	$09738(4)$	8 1(2)
C18	034888 (9)	0 1318(8)	0.9338(4)	7.3(2)
C19	$0.3339(8)$	-0.1756(6)	0.8836(3)	5.0 (1)
C20	02435 (8)	-0 2749(6)	0.8834(3)	$54(1)$
C21	0.2101(6)	-03093(5)	0.8175(3)	4.5(1)
C22	$0.1202(7)$	-03966(5)	$08046(4)$	5.7(1)
C23	0.0647(9)	-0 4492(7)	0.8609(5)	8.2(2)
C24	0.096(1)	-04154(8)	0 9277(5)	103 (2)
C25	0 184(1)	-0.3288(7)	$09386(4)$	8.0(2)

[^0]Table 2
Positional parameters 2-triphenylstannyl 4,5-dimethylısothiazol-3(2H)-one 1,1-dioxide

Atom	x	y	z	$B\left(\AA^{2}\right)^{a}$
Sn	$0.42853(4)$	$0.12091(3)$	$0.77371(2)$	$2.993(6)$
S	$0.4716(2)$	$-0.1337(1)$	$086978(9)$	$310(2)$
O1	$0.5415(5)$	$-0.1903(4)$	$08094(3)$	$40(1)$
O2	$0.5496(5)$	$-0.0988(5)$	$0.9337(3)$	$4.9(1)$
O3	$01732(5)$	$0.0106(5)$	$08189(4)$	$5.2(1)$
N	$03875(5)$	$-00329(4)$	$0.8348(3)$	$3.2(1)$
C1	$0.6337(5)$	$0.1280(5)$	$0.7839(4)$	$3.3(1)$
C2	$0.6904(7)$	$0.2277(6)$	$0.8042(4)$	$4.0(1)$
C3	$0.8243(8)$	$0.2372(7)$	$0.8137(5)$	$5.1(2)$
C4	$0.9026(7)$	$0.1477(8)$	$08026(6)$	$56(2)$
C5	$08501(8)$	$00483(7)$	$07823(7)$	$6.1(2)$
C6	$07155(8)$	$00374(6)$	$0.7711(7)$	$5.5(2)$
C7	$0.3418(7)$	$0.2321(5)$	$0.8527(4)$	$3.7(1)$
C8	$0.2299(9)$	$02914(7)$	$0.8362(6)$	$5.8(2)$
C9	$0.175(1)$	$0.3584(8)$	$0.8926(8)$	$8.0(3)$
C10	$0.234(1)$	$0.3679(8)$	$0.9633(6)$	$8.2(2)$
C11	$0.345(1)$	$0.3109(9)$	$09790(5)$	$7.7(3)$
C12	$0.399(1)$	$0.2411(7)$	$0.9230(5)$	$59(2)$
C13	$0.3393(7)$	$0.0705(5)$	$0.6695(4)$	$35(1)$
C14	$0.4002(9)$	$-0.0038(6)$	$0.6233(5)$	$4.9(2)$
C15	$0.337(1)$	$-00430(7)$	$0.5573(5)$	$6.1(2)$
C16	$0214(1)$	$-0.0068(7)$	$0.5410(5)$	$6.1(2)$
C17	$0.156(1)$	$00674(9)$	$05852(6)$	$6.6(2)$
C18	$0.2150(9)$	$0.1044(8)$	$0.6500(5)$	$6.0(2)$
C19	$0.2555(7)$	$-0.0526(6)$	$08423(4)$	$3.6(1)$
C20	$0.2267(7)$	$-0.1580(6)$	$08803(4)$	$3.8(1)$
C21	$0.3361(8)$	$-0.2110(6)$	$0.9002(4)$	$3.8(1)$
C22	$0.354(1)$	$-0.3169(7)$	$0.9394(6)$	$5.8(2)$
C23	$0091(1)$	$-0.1936(9)$	$0.8938(6)$	$6.5(2)$

${ }^{a}$ Anisotropically refined atoms are given in the form of the sotropic equivalent displacement parameter defined as: $B=4 / 3\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3}\right]$.
mination system on a DEC MicroVax II minicomputer [7]. The atomic coordinates are listed in Table 1.

Crystal data: $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Sn}_{3} \mathrm{SnC}(\mathrm{O}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}, M=532.19$, orthorhombic, $P 2_{1} 2_{1} 2_{1}$, $a=9.333(1), b=12.329(2), c=19.348(3) \AA, V=2226.3(9) \AA^{3}, \mu=12.64 \mathrm{~cm}^{-1}$, $D_{\mathrm{c}}=1.588 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$.

The data set for the crystal of 2-triphenylstannyl 4,5-dimethylisothiazol-3(2 H)one 1,1-dioxide ($0.36,0.42,0.62 \mathrm{~mm}$) consisted of $2917(I) \geqslant 3 \sigma(I)$ reflections (collection range: $h=0-13, k=0-16, l=0-24 ; 2 \theta_{\max }=50^{\circ}$). Direct methods again gave only the position of the heavy atom. The non-H atoms were obtained from difference Fourier syntheses. All non-H atoms were refined anisotropically and the H -atoms isotropically. The structure was refined to unweighted R and weighted R_{w} indices of 0.038 and 0.050 , respectively; 325 variables were refined. Fractional atomic coordinates are listed in Table 2.

Crystal data: $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SnNC}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{S} \mathrm{O}_{2}, \quad M=510.18$, orthorhombic, $P 2{ }_{1} 2_{1} 2_{1}, a=10.288(3), b=12.187(1), c=17.542(4) \AA, V=2199(1) \AA^{3}, \mu=12.79$ $\mathrm{cm}^{-1}, D_{\mathrm{c}}=1.541 \mathrm{~cm}^{-1}$ for $Z=4$.

The absolute structures [8] of the compounds were not determined.

Results and discussion

2-Triphenylstannyl 1,2-benzisothiazol-3(2H)-one 1,1-dioxide was synthesized by condensing triphenyltin hydroxide with saccharin in toluene since use of ethanol as solvent gave the ethanol adduct [1]. However, ethanol-free 2 -triphenylstannyl 4,5-dimethylisothiazol-3(2 H)-one 1,1-dioxide was obtained by treating triphenyltin hydroxide with 4,5-dimethylisothiazol-3(2 H)-one 1,1-dioxide in ethanol [4].

The 1,2-benzisothiazol-3(2H)-one 1,1-dioxide anion is covalently bonded to the triphenyltin cation through a short tin-nitrogen bond (2.167(5) \AA) in the 2-triphenylstannyl 1,2-benzisothiazol-3(2H)-one 1,1-dioxide molecule (Fig. 1). The three carbon-tin-carbon angles (115.2(2), 117.7(2), 118.5(2) ${ }^{\circ}$) are opened up, whereas the three nitrogen-tin-carbon angles (98.0(2), 98.7(2), 102.8(2) ${ }^{\circ}$) are compressed from the 109.5° angle expected for an idealized tetrahedral structure. The sulfonyl oxygen atom of an adjacent (symmetry transformation: $1-x, \frac{1}{2}+y, 1 \frac{1}{2}-z$) molecule is located at a distance of $2.885(5) \AA$ from the tin atom. This interaction, albeit weak, links the molecules into a stretched helical chain running parallel to the b-axis, so that the coordination polyhedron around the tin atom approaches a trans-trigonal bipyramid. This description is also supported by the magnitude of the tin- $119 m$ Mössbauer quadrupole splitting ($2.99 \mathrm{~mm} \mathrm{~s}^{-1}$), which falls at the lower limits of the range found for five-coordinate triphenyltin compounds [9]. The tin-oxygen bond distance compares well with that (2.822(3) \AA) found in 2-trimethylstannyl 1,3,5-trithia-2,4,6-triazine 1,1-dioxide [10], which has been described as a weakly bridged polymer.

Fig. 1. The asymmetric unit of 2-trıphenylstannyl 1,2-benzısothiazol-3($2 H$)-one 1,1-dioxide. Selected distances and angles $\mathrm{Sn}-\mathrm{O}^{\prime} 2$ 885(5), $\mathrm{Sn}-\mathrm{N} 2.167(5), \mathrm{Sn}-\mathrm{Cl} 2118(5)$, $\mathrm{Sn}-\mathrm{C} 72$ 124(5), $\mathrm{Sn}-\mathrm{C} 13$ $2.127(6) \AA, \mathrm{O1}^{\prime}-\mathrm{Sn}-\mathrm{N} 177.9(2), \mathrm{O1}^{\prime}-\mathrm{Sn}-\mathrm{C} 180.4(2), \mathrm{O1}^{\prime}-\mathrm{Sn}-\mathrm{C} 780.8(2), \mathrm{O} 1^{\prime}-\mathrm{Sn}-\mathrm{C} 13$ 79.3(2), $\mathrm{N}-\mathrm{S} \mathrm{n}-$ C1 98.0(2), N-Sn-C7 98.7(2), N-Sn-C13 102 8(2), C1-Sn-C7 115.2(2), C1-Sn-C13 118.5(2), C7-SnC13 117.7(2) ${ }^{\circ}$

Fig 2. The asymmetric unit of 2-triphenylstannyl 4,5-dımethylisothiazol-3(2H)-one 1,1-dioxide. Selected distances and angles: $\mathrm{Sn}-\mathrm{Ol}^{\prime} 2.742(5), \mathrm{Sn}-\mathrm{N} 2.200(5), \mathrm{Sn}-\mathrm{Cl} 2.120(5), \mathrm{Sn}-\mathrm{C} 72$ 133(7), $\mathrm{Sn}-\mathrm{C} 13$ $2.136(7) \AA$ A $\mathrm{Ol}^{\prime}-\mathrm{Sn}-\mathrm{N} 174.7(2), \mathrm{Ol}^{\prime}-\mathrm{Sn}-\mathrm{Cl}$ 84.2(2), $\mathrm{Ol}^{\prime}-\mathrm{Sn}-\mathrm{C} 781.9(2), \mathrm{O1}^{\prime}-\mathrm{Sn}-\mathrm{C} 1380.5(2), \mathrm{N}-\mathrm{Sn}-$ C1 100.6(2), $\mathrm{N}-\mathrm{Sn}-\mathrm{C} 798$ 3(3), $\mathrm{N}-\mathrm{Sn}-\mathrm{C} 13$ 95.1(2), C1-Sn-C7 109.6(3), C1-Sn-C13 1208(3), C7-SnC13 123.9(3).

The weak interaction in 2-triphenylstannyl 1,2-benzisothiazol-3(2H)-one 1,1-dioxide is replaced by a formal dative bond in its oxygen-donor adducts. The bond distances in the adducts fall in the 2.376 (7) to $2.413(7) \AA$ range.

The effective bulk of the anionic group in 2-triphenylstannyl 4,5-dimethyliso-thiazol- $3(2 \mathrm{H})$-one 1,1 -dioxide (Fig. 2) is smaller than that in the 1,2-benzisothia-zol-3(2 H)-one 1,1-dioxide, so that the nearest neighboring (symmetry transformation: $1-x, \frac{1}{2}+y, 1 \frac{1}{2}-z$) sulfonyl oxygen atom can be expected to be closer to the tin atom in the crystal structure. This is indeed observed, the tin-oxygen distance being $2.742(5) \AA$. The close approach of the sulfonyl oxygen atom causes the axial nitrogen atom to be displaced further away ($\mathbf{S n}-\mathbf{N}=2.200(5) \AA$). A further consequence is the widening ($123.9(3)^{\circ}$) of one of the three carbon-tin-carbon angles. The geometry at the tin atom is a less distorted trans $-\mathrm{C}_{3} \mathrm{SnNO}$ trigonal bipyramid.

Acknowledgments

We are grateful to the University of Malaya (Vote F $151 / 91$), the National Science Council for R\&D (Grant No. 2-04-07-06) and the Earmarked Grant for R \& D, Hong Kong (Acc. No. 221300010) for generous support of this research.

References

[^1]3 S.W Ng, A.J. Kuthubutheen, A Zaınudın, Chen Wei, V.G Kumar Das, B. Schulze, K C Molloy, W.-H. Yıp and T C.W. Mak, J. Organomet. Chem., 403 (1991) 101.

4 S W Ng, Chen Weı and V G. Kumar Das, Acta Crystallogr, Sect C, submitted
5 VI Shcherbakov, A.A. Anisimov, N.E Stolyarova, M.S. Fel'dman and V.F Smırnov, Izv. Vyssh Zaved., Khım. Khim. Teknol, 25 (1982) 690; Chem. Abstr., 97 (1982) 163153u
6 R C G. Killean and J L. Lawrence, Acta Crystallogr., Sect B, 25 (1969) 1750.
7 C.K. Fair, molen Structure Determination System, Delft Instruments, X-Ray Diffraction B V., Rontgenweg 1, 2624 BD Delft, The Netherlands, 1990
8 P.G Jones, Acta Crystallogr, Sect A, 40 (1984) 660.
9 G.M Bancroft, V G Kumar Das, T.K. Sham and M.G Clark, J. Chem. Soc., Dalton Trans., (1976) 643.

10 H W Roesky, M Witt, M Diehl, J W Bats and H. Fuess, Chem. Ber., 112 (1979) 1372.

[^0]: ${ }^{a}$ Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $B=4 / 3\left[a^{2} B_{1,1}+b^{2} B_{2,2}+c^{2} B_{3,3}+a b(\cos \gamma) B_{1,2}+a c(\cos \beta) B_{1,3}+b c(\cos \alpha) B_{2,3}\right]$

[^1]: 1 S.W. Ng, Chen Wei, V.G. Kumar Das and T.C.W. Mak, J. Organomet. Chem., 373 (1989) 21
 2 S.W. Ng, Chen Wei, V.G. Kumar Das and T.C.W. Mak, J. Organomet. Chem., 379 (1989) 247.

